EXTREMAL EFFECTIVE DIVISORS OF BRILL-NOETHER AND GIESEKER-PETRI TYPE IN M1,n

نویسنده

  • DAWEI CHEN
چکیده

We show that certain divisors of Brill-Noether and Gieseker-Petri type span extremal rays of the effective cone in the moduli space of stable genus one curves with n ordered marked points. In particular, they are different from the infinitely many extremal rays found in [CC].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KOSZUL DIVISORS ON MODULI SPACES OF CURVES By GAVRIL FARKAS

Given a moduli space, how can one construct the “best” (in the sense of higher dimensional algebraic geometry) effective divisor on it? We show that, at least in the case of the moduli space of curves, the answer is provided by the Koszul divisor defined in terms of the syzygies of the parameterized objects. In this paper, we find a formula for the slopes of all Koszul divisors on Mg. In partic...

متن کامل

EFFECTIVE DIVISORS ON Mg, CURVES ON K3 SURFACES, AND THE SLOPE CONJECTURE

In this paper we use the geometry of curves lying on K3 surfaces in order to obtain a number of results about effective divisors on the moduli space of stable curves Mg. We begin by showing two statements on the slopes of such divisors: first that the HarrisMorrison Slope Conjecture fails to hold on M10 and second, that in order to compute the slope of Mg for g ≤ 23, one only has to look at the...

متن کامل

The Uniformization of the Moduli Space of Principally Polarized Abelian 6-folds

Introduction 1 1. Kanev’s construction and Prym-Tyurin varieties of E6-type 7 2. The E6 lattice 11 3. Degenerations of Jacobians and Prym varieties 13 4. Degenerations of Prym-Tyurin-Kanev varieties 15 5. The global geometry of the Hurwitz space of E6-covers 20 6. The Prym-Tyurin map along boundary components of Hur 30 7. Ordinary Prym varieties regarded as Prym-Tyurin-Kanev varieties 39 8. The...

متن کامل

Vector Bundles with Sections

Classical Brill-Noether theory studies, for given g, r, d, the space of line bundles of degree d with r + 1 global sections on a curve of genus g. After reviewing the main results in this theory, and the role of degeneration techniques in proving them, we will discuss the situation for higher-rank vector bundles, where even the most basic questions remain wide open. Focusing on the case of rank...

متن کامل

Du Val Curves and the Pointed Brill-noether Theorem

We show that a general curve in an explicit class of what we call Du Val pointed curves satisfies the Brill-Noether Theorem for pointed curves. Furthermore, we prove that a generic pencil of Du Val pointed curves is disjoint from all Brill-Noether divisors on the universal curve. This provides explicit examples of smooth pointed curves of arbitrary genus defined over Q which are Brill-Noether g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014